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ABSTRACT 

A FORTRAN program has been  written for machine  computation of group  tables for 
finite  groups. The listing  presented is for use on the NASA Lewis Research  Center 
IBM 360-67 and is machine  dependent.  The use of the  method  depends  on  the  fact  that 
every finite  group of order n is isomorphic  to  some  subgroup of the symmetric  group 
Sn.  The  procedure for using  the  program is as follows: After  the  proper  ismorphism 
has  been established, the  appropriate  elements of Sn are entered  into  the  program as 
input  data.  The  program  computes  and  prints  out  the  group  table for these  elements of 
Sn.  Then  the  translation is made from  the Sn elements back to  the  original  group  ele- 
ments. Two examples  are shown: One is the entire  group S4, and the other is A5, the 
even  permutation  subgroup of S5. 
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FORTRAN PROGRAM FOR MACHINE  COMPUTATION 

OF GROUP  TABLES OF FINITE  GROUPS 

by Gabriel  Allen, David D. Evans, and  Paul  Swigert 

Lewis  Research  Center 

SUMMARY 

A FORTRAN program  has  been  written  for  machine computation of group tables for 
finite groups.  The  listing  presented is for use on the NASA Lewis Research  Center 
IBM 360-67 and is machine dependent.  The use of the method  depends on the fact that 
every  finite  group of order n is isomorphic  to  some  subgroup of the symmetric  group 
Sn. The  procedure  for  using  the  program is as follows: After the proper  isomorphism 
has been  established,  the  appropriate  elements of Sn are entered into  the program as 
input data. The program  computes and prints out the  group table for these elements of 

Then  the translation is made  from  the Sn elements back to  the  original  group ele- 
~ 'n. 

ments. Two examples are shown: One is the entire  group S4, and  the other is A5, the 
even  permutation  subgroup of S5. 

INTRODUCTION 

Because of the  sheer  computational  labor involved in  constructing  group  tables  for 
large  finite  groups, the possibility of programming  such  tasks  for  machine computation 
is very appealing.  However,  group  multiplication  cannot be carried out on a machine by 
simply  inserting  an * between two elements of a group. A machine  program  for com- 
puting group tables is actually  more  closely related to  some of the programs  recently 
devised  for  proving  mathematical  theorems  and  algorithms  than to ordinary  arithmetic 
programming  (refs. 1 to 3). 

All of these  programs,  however, require the  group  table  to be fed in as input, after 
which the group can be manipulated  in any of several ways to extract the desired  infor- 
mation about its structure and properties (ref. 3). It appears  that  the  published litera- 
ture still does not  contain a specific  program  that  begins only with group  elements as in- 
put and  then  constructs  actual  group tables (see ref. 4 for  an up-to-date survey of corn- 



puters  in  group  theory).  Since  such a program would be very  useful  to  anyone  working +, 

with large finite groups, a program  has  been  devised  for  constructing a group table o r  
any  subsection of such a table for the  symmetric  group Sn. This machine-dependent 
program, which is written  in H level FORTRAN for the NASA Lewis Research  Center 
IBM 360-67, uses as input only the  group  elements  in the form of cycles.  As is well 
known, every finite group of order n is isomorphic  to  some  subgroup of Sn (ref. 5). 
Therefore, a table for any finite group G can be obtained  from  the table of the  appro- 
priate symmetric  group  once  the  isomorphism  between  the  elements of G and those of 
the  subgroup of Sn has  been given. 

program.  Therefore, a subroutine which stores  four  8-bit  words  in a single  32-bit 
storage  location is used  to  gain  more  storage.  This  procedure is referred  to as "pack- 
ing" the  storage  locations. 

Core  storage  limits  the  size of the  multiplication table which can be handled by the 

Examples of output for S4 and A5 (the  alternating  group on five letters) are pre- 
sented. 

DEFINITIONS  AND  CONVENTIONS 

The  entire  report  makes  use of properties of the  permutation  group Sn. An ele- 
ment of the  permutation  group  represents a rearrangement of a number of labeled  ob- 
jects among a number of labeled locations. To begin  with, each  object is assumed to  he - 
in  the  location which bears the same label as the  object.  The  term  standard  configura- 
tion (SC) is used to  describe  that  arrangement  in which the ith object is in  the ith lo- 
cation  for i = 1 to N, where N is the  number of objects  and/or  locations. When 
N = 3, for example, SC means 

? 

Location 

Object 

Every  group  element  in  Sn  can be written as a product of cycles. A cycle is a 
shorthand  notation which describes  the  number  and  nature of changes  effected by a given 
permutation. For example,  the  cycle  (1,3,2)  indicates-that  objects 1, 2, and 3 are to 
be  permuted  in  some  manner  and  that all other  objects are to  remain fixed. The  nota- 
tion is so economical  that it cannot describe the  nature of the permutation without some 
additional convention. Even though these  conventions are well known, they are described 
here for convenience. 

. 
c 
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If the individual numbers or  letters in  each  cycle are called units, then a unit may 
signify either a location or  an  object. Secondly, the convention may  be adopted of going 
from left to  right or  from  right  to left within a cycle, so that  there are four  choices al- 
together.  There are only two independent choices,  however,  since moving objects  to  the 
left must result in the  same  distribution of objects  among  locations as moving locations 
to the right and  vice  versa. The  convention used  here is that  in which the units denote 
objects  and  each unit is moved to  the  location  currentlyoccupied by the  unit to its left. 
An example should make  this clear. Consider the effect of operation  (1,3,2). When it 
operates on the SC, the result is 

c 

N 

When (1 ,3 ,  2) operates on the  configuration  on  the  right  side, the result is 

An interchange of two units is called a transposition. A property of permutations 
- which is very  useful  in  programming  group  operations is that  any  permutation can be 

obtained by successive  transpositions.  For  example,  (1,2,3) = (1,2)(2,3).  Therefore, a 
product of two group  elements  can be expressed as a single  chain of transpositions. An 
examination of the result of this chain on the SC can  then  show  the  single  group  operation 
which would yield  the same  rearrangement.  This  group  operation is then  the  product of 
the two original  operations. The preceding few sentences are the heart of the  method 
used  herein. 

USE OF CLASS ALGEBRA TABLES 

It is clear  that,  in  the  case of large finite groups,  even  the  group  table  itself is d i f -  
ficult  to  use  because of the sheer  physical  size of the table  and  the  inherent  difficulty of 
accurately  locating  the  proper  entry  in a given row  and column. It so happens  that  for 
most  groups  there is a useful way of breaking up the  group  table  into  smaller  blocks 
which  provides  important  information about  the gross structure of the  group. This 
method is simply to break up the  group into what are called class product  blocks.  Let 
Ki denote the set  of group  elements  in  the ith class of group G. Then KI * KJ is 

d 
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called the (IJ)th class product  block. Such a block is the table of group  multiplication of 
all the elements of the Jth class used as column  headings by all the elements  in the I th 

class used as row  headings.  The  resulting  gross  structure of the  group can be sche- 
matically  summarized in the  class  algebra  table (ref. 6) for the  group. 

* 

A very  simple  example of such a breakup  can be shown here by considering S3. It 
has two classes in  addition  to the trivial class KO, which consists  entirely of the identity 
element E. Class K2 is defined here as the collection of cycles of length three. Thus, 
K2 consists of the two group  elements (1, 2,3) and (3, 2, 1). The collection of two-unit 
cycles (or transpositions)  makes up the third class.  Thus, K3 consists of the elements 
(1, 2), (1,3), and (2,3). Therefore,  the  gross  structure of the 36 entry  group table for  
S3 can be shown by the nine-element  class  algebra table: 

KO KO K2 K3 

K2 K2 =o + K2 =3 

K3 K3 2K3  3K0 + 3K2 

In examining this table, it should  be noted that an  entry  such as 3K0 + 3K2 in the class 
product block (33) means that, in this block, every  element  in  class K2 and in class 
KO appears  exactly  three  times. 

consist  merely of the three classes themselves.  Since, for  any two classes Ri and K 
Ki * Kj = Kj * K. all the additional  information  about the gross  structure of S3 can be 
obtained  from  the three class product  blocks K2 * K2, K3 * K3, and K2 * K3. 

The  five  class  product  blocks KO * KO, KO * K2, KO * K3, K2 * KO, and K3 * KO 
j’ 

1’ 

Examples 

Before  examining  the output of some  actual  cases, it should be noted that the form 
in which these tables appears is slightly  more  efficient  than  the conventional group table. ~ 

A conventional  group table for a group of order n  containing the group  elements 
E, g2, . . . , gn has the  form 

4 



E 

82 

gn 

E g2 . . .  gn 

E . . .  gn 

82 X . . .  X 

. . .  

gn X X 

The first row  and first column merely  repeat  the  row  and column  headings  and are, in a 
sense,  redundant.  The  form of the tables in  this  program  omits  the first row  and first 
column of the  group table. Of course,  the  entries still "appear"  on  the  page,  but  only 
as row or  column  headings. 

Example 1 - S4. - This  group is small enough so that  the  entire  group table can be 

. 

printed  out  in a reasonable  space.  Therefore,  the  entire  set of 24 group  operations was 

entered as data  and  the  group table constructed.  The  output  for this group  follows. 
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Example 2 - A5. - The  group A5 is the  group  oEeven  permutations of S5. It is, - 
therefore, a proper  subgroup of S5. There are five  classes of A5 including KO. The 
elements of S5 which are expressible as five-unit  cycles fall into two distinct  classes of 
12  group  elements  each.  These will be cd!.ed K2 and K3. The 20 elements express- 
ible as three unit cycles  form a class called. K4, and  the 15 elements which may be ex- 
pressed as products of two independent transpositions (e. g. , (12) (35)) are in  the class 
Kg. One should not be confused by the  fact  that  the 24 five unit cycles of S5 (which fall 
into a single class of S5) fall into two c'lstinct classes  in A5. It requires conjugation 
by an odd permutation of S5 to  take a;: t? .ement of K2 into K3 and  vice  versa.  The 
only group  elements  available  for cora,ugation in A5 are the  even  permutations of S5, 
and no conjugation of any element  in K2 by such  an  even  permutation  can take this ele- 
ment  into K3. 

Since A5 is of order 60, it is a good choice for  breaking up the  group table into 
class product  blocks.  The  program  can  readily handle such  blocks.  However,  class 
products do not have  the closure  property  and  elements  can arise which are not included 
in the  input for  either  class  in  the class product block. Therefore, this example  serves 
to illustrate the  warning  that IDENT (see program  description)  has  to be made long 
enough to  accommodate  the  longest  chain of changes  in  locations which any element of the 
full  group  can  cause. Note, for  instance,  that  whereas  the class K4 consists of cycles 
three units long, the class product block for K4 * K4 contains  cycles  five  units long. 
The following class algebra  table is not readily  available  in  the  literature  and  was ob- 
tained  from  the class product  blocks  computed by this  program: - 

F" 
K2 12Ko + 5K2 + K3 + 3K4 

K3  K2 + Kg + 3K4 + 4 K 5  

K 2  + K3 + 3K4 + 4K5 

12Ko + K2 + 5K3 + 3Kq 

5Kz + 5K3 + 3K4 + 4K5 

5 K 2 +  5K3 + 3 K 4 + 4 K 5  

5 K 3 +   3 K 4 + 4 K 5  

5KZ + 3K4 + 4K5 

K4 5K2 + 5K3 + 3K4 + 4K5  5K2 + 5K3 + 3K4 + 4Kg 20KO + 5K2 + 5K3 + 7Kq + 8K5  5K2 + 5K3 + 6Kq + 4 K 5  

I 5K3 + 3K4 + 4K5  5K2 + 3K4 + 4K5  5KZ + 5K3 + 6K4 + 4K5 15K0 + 5KZ + 5K3 + 3K4 + 2K5 

Of course,  the  class  algebra table only gives  gross  information  about  the  structure 
of the  group. For  example, although K2 * K4 = K4 * K2, both class product  blocks are 
needed since one  cannot  predict  the  details of block K2 * K4 from K4 * K2 o r  vice 
versa.  Therefore, 'dl 16 nontrivial  class  product  blocks  were  obtained and are shown 
in the following pages. 
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EXAMPLE 2 - Ag 

K 3 * K 3  
GROUP 1112 .314 ,51  

1 5 1 3 r l s 4 .  I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
1 
I 
t 

21: 

1 1  
I1  
11 

11 
1 1  

3.5.1 I 
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K 4 * K 4  
GKOUP 1 1.2.3.4r51 

1 
1 
1 
i 
1 
I 
1 
I 
1 
1 
1 

I 

l I r L r 3 ) :  
i 2 . 3 . 4 1 :  
11.3.41: 
1 1 . 2 . 4 1 :  
( 1 . 7 1 5 1 :  

i 2 , 5 , 5 1 :  
i 1 , 3 , 5 1 ;  

12r4 .51 :  
i 1 . 4 . 5 1 :  

1 3 . 7 , 1 1 :  
(3 .4951:  

14.3.21: 
1 4 , 3 * 1 1 :  
i 4 . 2 , 1 1 :  
1 5 . 7 , I i :  
i 5 r J l l i :  
15,3,?1:  
1 5 . 4 ~ 1 1 :  
15.4.21: 
1 5 . 4 1 3 1 :  

i 5 , 3 , l l  
15.2.11: 

151394.2.  
15 .21314,  
1 5 . 4 . 1 1  
F 

I 1  
I 1  

I 

E 
13.5.21 

i5 .3 ,11 :  
1 5 . 1 1 i 3 . 2 1  
15.4.2.J.11 
1 5 , 4 1 1 1  
i 5 . J , 2 . 4 . 1 1  
15,3 ,21  
r 

I 

, I 1  
1 
I 
I )  
I1 

I 

I 

1 ;  
I 
I 

i 5 , 2 , 1 1 :  

1 
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11.2113.41: 
1 1 . ~ 1 1 2 . 4 1 :  
1 1 , 4 1 1 2 , 3 1 :  
1 1 s 2 1 1 3 ~ 5 1 :  
Ilr~ll2,51: 
I1 .5112.31:  
I I . Z I l 4 r 5 1 :  
11 .4112,51:  
11 .5112.41:  
i 1 . 3 1 1 4 . 5 1 :  
1 1 , 4 1 1 3 , ~ ~ 1 :  
11.5113.41:  
12 .3114.51:  

1 2 . 5 1 1 l . 4 1 :  
12.4113.5I: 

11.4112.51:  
1~.4.2.5.lI 

15.3 .21  
i 2 & . 4 , 3 , 1 1  

i 4 . 2 . 3 . 5 . 1 1  

12,3 .5 .4 .11  
1 3 . 4 . 1 1  

1 2 . 5 1 i 3 . 4 1 :  

E 

13.1115.2I 
15.1113.21 

13.2115.41 

11 



. 

I 

GHOUP 

5.4.21 
4 . 3 . 5 . 2 . 1 I  
Zrlll4r3l 
4 . 1 1 ( 5 1 2 1  I 



K2*K5  
GRUUP I 

1 4 . 1 1 1 3 r L I  
i 3 s 5 r l l  

12.1115.31 
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GHCUP 1 1 . 2 . 3 . 4 . 5 1  
K 3 b K 4  

1 
11 
1 

1 
1 

1 5 . 3 . 2 ) :  

K l U K 5  

I 

1 4 . 3 . 5 . 2 , I l  



K 4 * K 3  
LROUP l r L . 3 r 4 . 5 1  

1 :  

I 
I 

415 .21  
?.4* I I 
3 1 4 1 5 . 2 1 1 1  

5 . 2 . 3 . 4 . 1 1  
3 1 4 . 0  

15 



K 4 b K 5 ,  
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K5*K2 

11.2.5.3.41: 
1 5 , 4 * 2 1  
14.3.2.5.1I 

I 

I 
I 

I 
I 

I 14.5.11 

1: 

1 

' I :  
I 

1 :  
I 

I 1: 

I 

I 

I 
I 

I 
I 

. 

T.;ILlUD 1 1 . 2 , 3 , 4 . 5 1  

: I I . 4 . 5 . 3 . L I :  15,3.1.4.21:  
1 3 . 1 1 1 5 . 4 1  ( 3 r 2 . 5 r 4 . 1 1  
I L . S r 4 . 5 1 1 1  12.5.11 
( 4 . 5 . 2 1  15.2114.31 
1 4 r 3 . 1 1  1 4 . 1 1 1 3 ~ 2 1  
l 4 . 2 ~ 3 r 5 . 1 1  14r5 .11  
14 .1 l15 .21  14.3.5.2.11 

I 

15.1.2.4.31: 
I s.5.21 
14 .1115131  

(4 .5 .21  
1 3 r 5 r 4 . 2 . 1 1  

1 5 . J . 2 , 4 , 1 I  
1 3 . 1 1 1 4 ~ 2 1  
1 5 r 2 1 1 4 r 3 1  
1 5 . 4 ~ 3 . 2 . 1 1  

I 
1 

I 

I 



. 

I 1 
1 

. 

' 
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PROGRAM  DESCRIPTION 

General  Description 

The  program  computes a group table for  elements of Sn which are read  in as a 
series of column and a series of row  operations  in  cycle notation.  The general  proce- 
dure  consists of the following steps: 

(1) A set of K column  operations  and  L  row  operations is read  into  the  program. 
(2) Each of these  operations is broken down into its equivalent  sequence of trans- 

positions. Let the group  operation P.. represent  the (group) product of the ith row 
operation Ri  by the jth column  operation  C Then P.. will be stored as a long se- 
quence of transpositions. 

11 
j. 4 

(3) The SC is rearranged  in  accordance with the  sequence of transpositions which 

(4) The rearrangement is examined  and a single  group  operation which effects the 

(5) This single  group  operation is entered  in the ith row  and jth column of the 

The  manner  in which the  machine  performs  steps (2) to (5) is far from  standard.  For 

represent P.. . 

same  rearrangement of SC is identified as the  product Ri * cj. 

group table array.  

11 

. 
this reason,  an  illustrative  example is carried  through  in  some detail. The  example 
chosen is the  entry  in A5 corresponding  to  the  group  multiplication (14235) (521). 

set of entries  for the triply  subscripted quantity SYMBOL(L, N, ") over the f u l l  range 
of the first subscript L for fixed N and M. Thus, { ANS(-, I1,12) } is the collection 
of ANS(I,Il, 12) values with Ilth column  and 12th row  fixed and with I allowed to  range 
from its minimum to its maximum  value. 

For  future  reference, the  notation { SYMBOL(-, N, M) } is used  to denote a complete- 

The  notation [A1, A2,. . . ,An] is used to  display the actual  contents of an  array. 
This notation signifies that the content of the first storage location of the array is AI, 
that of the  second  storage  location is A2, etc. 

An outline of the  program,  broken down into  sections which perform  recognizable 
functions,  follows.  (The flow charts and  listings  in  appendixes A and B contain more 
detailed  descriptions. ) 

Block 1 - set up constants. - The  constants  used  in the program are given literal 
names  and are declared  either INTEGER or  LOGICAL in TYPE statements. All  the  sub- 
scripted  variables are dimensioned  and  allocated  storage  locations by the use of a 
DIMENSION statement. A DATA statement is used to give literal names to the following 
variables: 

19 



Variable Literal name  Identification 

LP L e f t  parenthesis 

E 

R P  Right parenthesis 

CM Comma 

BLK Blank 

IDNT Identity  element of group 

Block 2 - read in DATA. - The  data  describing the group  and  the  group  operations 
are read into the program.  The labels to be assigned  to  the  objects  and  to  the  locations 
are read  from  the list for  DENT which is limited  to one card. It is read in with 
FORMAT(80Al) and  stored  in INITAL(N) in  the  form bbbX, where b represents  an 
8-bit blank and X represents  the  8-bit  location  in  the  32-bit  storage register in which 
the  integer  from  DENT is stored.  This  storing  arrangement is accomplished by sub- 
routine SQUEZ, which is described later. 

Description of Input 

The input cards are read  in  the following order: 

First card TITLJ3 one card with FORMAT(80Al) 

Second card IDENT one card with FORMAT(80Al) 

Note that  the  input  for  DENT  must be long enough to  include  the  maximum  number of 
objects  to be moved in any group  operation.  Thus, the list for  DENT  must be of the 
form (A1, AZ, . . .An), where n is the  subscript  in Sn and Ai is any alphanumeric 
symbol. 

The next set of cards contains  the ACROSS (column) operations.  There  can be as 
many as four cards with FORMAT(80Al),  and each  operation is followed by a colon. 

A blank card follows  the preceding set. It is needed to signal the end of the ACROSS 

The  next set contains DOWN (row) operations.  There  can be as many as four cards 

A blank card follows  the  preceding set. It is needed to signal the  end of the DOWN 

input. 

with FORMAT(80A1), and  again  each  operation is followed by a colon. 

input. 
The  input for both ACROSS and DOWN operations is in  cycle notation. 
Several  error  checks are run on IDENT. These  include  checking  the  maximum 

number of nonblank units (which is six in this version of the program), the presence ,of 

20 



blank spaces  on  the  card,  and the illegal use of parentheses. 
The  group  elements  themselves are read  from  the list for INPUT(J, K),, which is 

also read  in with FOFtMAT(80Al). The complete set of column  operations is read first. 
- The  upper  limit of this input is four  cards followed by a blank card. Then the complete 

set of row  operations is read in. This set is also  limited  to  four  cards followed by a 
blank card. 

Example of Input - Class Algebra Block K2 * Kq of A5 

K 2  *K4 
(1,2,3,4,5) 
(1,2,3):(2,3,4):(1,3,4):(1,2,4):(1,2,5):(1,3,5):~2,3,5):(1,4,5):(2,4,5):(3,4,5): 
(3,2,1) : (4,3,2) : (4,3,1) : (4,2,1) : (5,2,1) : (5,3,1) : (5,3,2) : (5,4,1) : (5,4,2) : (5,4,3) : 
Card 5 is blank. 
~'(1,2,3,4,5):(1,2,5,3,4):(1,4,5,2,3):(1,4,2,3,5):(1,3,5,4,2):(1,3,4,2,5): 
(5,4,3,2,1) : (5,2,1,4,3) : (5,4,1,3,2)  :(5,3,2,4,1)  :(5,3,1,2,4) : (5,2,4,3,1) : 

Card 8 is blank. 

Cards 3  and 4 are ACROSS (column) operations,  and  cards 6 and '7 are DOWN (row) 
operations. 

Block 3 - store  each  group  operation as product of transpositions. - In this block, - 
each  group  operation is decomposed  into its equivalent  product of transpositions  and  then 
stored  in PAIRS(1, NOP, K) (see appendix B). The 3rd  subscript K is 1 or  2 according 

~ to whether  the  operation is a column or  row  element,  respectively.  Thus,  an  entry  in 
PAIRS(& NOP, K) is the I unit of the NOP column (K = 1) o r  row (K = 2) group ele- 
ment. 

th  th 

The  example  used  herein is an  entry  in the K2 * K4 class  product block of A5. 
The  input for this block, which was  given  in  the preceding  section,  shows  that the element 
(521) was  the 15  ACROSS (column) operation and therefore  corresponds to K = 1, 
NOP = 15. Before  being  stored  in a PAIRS array, the  element is considered  to be of the 
form (52)(21).  The  contents of {PAIRS(-, 15, 1) } is [5 2 2 11 or  

th 

PAIRS(1,15,1) PAIRS(2, 15,l) PAIRS(3,15, 1) PAIRS(4,15,1) 
5 2 2 1 

The  element (14235) is the 4th DOWN (row) element,  and it therefore  corresponds to 
K = 2, NOP = 4. The  contents of the eight registers which constitute  the  complete 
{PAIRS(-, 4,2) } array are [ 1 4  4  2 2 3 3 51. 

Block 4 - set up arrays  in  standard configuration. - In &is block, a number of 
standard  configurations are set up. E NC and NR are the  total  number of column  and 
row  operations,  respectively,  then Nc X NR SC's are set up. A given SC is set up  by 
storing the  quantity bbbI in  location ANS(1, II, 12) (see appendix B). For a fixed I1 

- ~ _ ~ _ i  



and I2, and SC is the  complete set of ANS(I,Il, 12) over the ful l  range of I (see  example 
in block 5). 

It is very  important  to note the differences  in the roles of the second  and  third  sub- 
scripts here and in PAIRS. In ANS, the  second  subscript  always denotes'  the Ilth colum 
entry  and the third  subscript  always  denotes  the 12th row  entry.  In PAIRS,  on the other 
hand, the third  subscript is used  to  denote  whether a row (K = 2) or a column (K = 1) 
operation is involved.  The second  subscript  labels which row or column.  However, an 
entry  in PAIRS never  mixes  row  and  column  operations: it refers either  to  one or  to the 
other, depending  on  whether  the third subscript is 1 or  2. 

Block 5 - perform  group  multiplication. - In this block, the  indicated  operations  for 
all the group  products  operation  I2 * operation I1 (= P12, 11) are actually  performed. The 

, method used is to  transpose  successively units from  the SC  of { ANS(-, 11,12) } in  accord- 
ance with the indicated  operation of { PAIRS(-, I1,l) } followed by the  operation of 
{PAIRS(-,  12,2) } . The way in which this is accomplished  may be understood by following 
the procedure on a single,  complete { ANS(-,  11,12) } array. 

The storage location ascribed to ANS(J, 11, 12) is considered  to be the Jth location 
of the SC. The  quantity stored in ANS(J, 11, I2) is considered  to be the "thing" which 
moved to the Jth location as a result of the operation  (operation I2 * operation 11) on the 
SC. Schematically, upon entering block 5, the { ANS(-, Il,I2) } array is in  the SC. Thus, 
for A5, {ANS(-,Il,I2) } = [l 2 3 4 51. 

Continuing with the  example of (14235)(521), when K = 1, I1 = 15, and when K = 2, 
I2 = 4. Therefore, { ANS( -, 11,12) } = { ANS(-, 15,4) } . The first rearrangement of the 
SC  of this ANS ar ray  is the one effected by {PAIRS(-, 15,l)  } . After being operated on 
by PAIRS(-, 15, l), the { ANS(-, 15,4) } array is [5 1 3 4 21. After this rearrangement by 
{PAIRS(-, 15,l)  } , the 12th row operation { PAIRS(-, 4,2) } is brought  into play. After 
the two successive  rearrangements effected by the two PAIRS arrays,  the { ANS(-, 15,4) } 
array is [ 1 4  5 2 31. This is the  content of { ANS(-, 15,4) } upon leaving block 5 and  en- 
tering block 6. 

~ _ _ ~  

Block 6 - identification of single  group  product  element. - In  effect,  the  permuted 
stored  values  in  each ANS array leaving block 5 are examined  and a determination is 
made of the  single  group  operation which would have  permuted  the SC to this final ANS 
array  in one step. It should be recalled  that the permuted ANS ar ray  which enters 
block 6 is the result of the successive  operations - operation I1 acting on the SC, fol- 
lowed by operation  I2  acting on this result. 

The same  final ANS array  can  always be obtained by the  action of a single  group op- 
eration on the SC. In block 6, this  single  operation is determined  and  stored  in { OUT(-, 
11, I2) } . Thus,  an  array { OUT(-, 11,12) } represents  the  single  group  operation which 
has the same effect on the standard ANS array (SC) as does  the  product of the two oper- 
ations  (operation 12 * operation 11). 
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In order  to  understand how the program  makes the  identification, reference may be 
made  to the contents of the { ANS(-, 15,4) } array upon entering block 6 .  The  content of 
a given register of ANS is the  same as the label of the  location in the SC. Since, in  the 

- SC, the location and the object had the same label, an  examination of the content of a 
particular ANS register provides  partial  information about the  rearrangement of two ob- 
jects. Referring  to  the { ANS(-, 15,4) } array shows  the content of register (2,15,4)  to 
be the integer 4. This  means  that  object 4 now occupies  the  position  originally held by ob- 
ject 2. In cycle  notation, this  state is indicated by placing a 2 to the left of 4 - thus, 2,4. 

The  next step is to  examine  the  contents of register 4. Since a 2 is found there, it 
is clear that a simple  transposition of objects 2  and 4 has  occurred, so that one part of 
the  group  element is the two unit cycle (24). 

An examination of the  content of register 3 will show a 5. This  then leads to an ex- 
amination of register 5. The  content of register 5 is 3, so  that  another  complete  cycle 
has  been found. An examination of register 1 (which is actually  made first) shows a 1 to 
be there. This  fact is correctly  interpreted as evidence that object 1 has not moved, 
and no 1 will appear  in the group  element.  The  examination of all the registers of 
{ ANS(-, 15,4) } is now complete  and the conclusion is reached that the two operation (521) 

followed by  (14235) is equivalent  to  the  single  operation (42)(53). Therefore, OUT(-, 15,4) 
= (4,2)(5,3).  This agrees with the entry  in the table at the intersection of the column 
headed by (521) and the row  headed by (14235). 

It would be confusing to  examine  group table which contained cycles representing 
- the same  group  operation but written  in a different way. Such cycles are called equi- 

valent  cycles. A trivial example would be a transposition.  Thus, (24) and (42) certainly 
represent the same  operation.  Less  trivial  examples are (123) and its cyclic  permata- 
tion (231) as well as (312). It should be noted that equivalent  cycles cannot be con- 
structed  in  this  program.  To  understand this, it is sufficient  to note two facts. First, 
the  configuration  resulting  from the operation of a given element of Sn  on the SC is 
unique. Since  equivalent  cycles  represent  the  same  group  element, they all result in  the 
same unique final  array.  Therefore, two final ANS arrays leaving block 5 can only dif-  
fer from one another if  they are associated with two distinct  group  elements. Secondly, 
block  6  follows the  same  procedure  in  examining  each ANS array and in  storing  the  find- 
ings  in  the  corresponding OUT array.  Therefore, if { ANS(-, 11,12) } has the same con- 
tent as { ANS(-, 13,14) }, then { OUT(-, 11,12) } is identical  to { OUT(-,  13,14) } .  

error  messages are also contained here. 

a word of 32 bits. SQUEZ packs  four  pieces of data in  one  storage word. It also  elimi- 

Block 7 - output and error  messages. - In this block, the  group table is listed. The 

Subroutine SQUEZ. - The usual manner of storing data on the IBM  360 series is in 

~ ~~ . .  
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nates  extraneous blanks. Before  calling SQuEZ an entry  in  the  group  multiplication 
table would look like the following: 

bbb(bbblbbb, bbbabbb, bbb3bbb) 

After  calling SQUEZ we have  the following: 

SUMMARY OF PROCEDURE 

A FORTFUN program  for use on the IBM 360-67 has  been  written  for  the  computa- 
tion of group tables for  finite  groups. Use is made of the efistence of an  ismorphism 
between any finite group of order n  and some  subgroup of the  symmetric  group Sn. 
Those  elements of S, which are isomorphic  to  the  group of interest are fed  into  the 
program as input  data.  The program then performs  the  group  operations on these ele- 
ments of Sn and  identifies  the  products of these  operations. 

product of transpositions  or  simple  interchanges of two objects.  The  program expresses 
each  element given as input data in this form  and  performs  the  indicated  interchanges 
for  a group  product of two such  elements on a standrad configuration.  The  resulting 
configuration is then  identified with that  configuration which a single  group  element would 
cause if applied to  the  standard  configuration. This group  element is called  the  product 
of the  other two and entered  in the  row  and  column  headed by the  original two elements 

The  procedure is based on the fact that  every  element of Sn can be expressed as a - 

Oi sn. 
Two examples are shown worked  out  in  the report. One of these is the  complete 

table of S4, the other is A5. For  the latter, the  class  algebra table is presented. This 
table, which is of interest  in itself, does not appear  to have  been  previously published. 

Lewis Research  Center, 
National Aeronautics  and  Space  Administration, 

Cleveland, Ohio, June 2, 1969, 
124-09-12-01-22. 
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APPENDIX A 

FLOW OF PROGRAM LOGIC 

Initialize 

variables 

t 
Block 2 

1 

Construct 
INITAL 
array 

, I ,  
(’”””> IDENT 

ACROSS 
operations 

t 
READ 
DOWN in INPUT 

Store 
operations 

operations array 
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0 Block 3 /e\ K = 1.2 

number of symbols 
in ACROSS opera- 
t ions 

number of symbols 

I = 1, IE 

TEMP = +- Yes TEMP blank = 

1 No 

0- of operation 

1 No 

er ro r  

e r ro r  in ACROSS 
and DOWN 

Y 

Count ACROSS 
operations;  Count 
DOWN operations; 

0 Statement 

No 
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/ Perform row \ 

Set up  ANS 
array  in SC 

column 
operation  on 

J-K1,  K1-2,. . . , 1 

t 
PAIRS (J, I 1 , U  = L1 

ANS(L l , I l ,  12) 

e" Statement 

-( ANS  array ) operation on 
resulting 

7- 
descending  order 
J=K2.  K2-2,. . . , 1 

PAIRS (J, I2,2) = U 

9 Statement 

tJ 

F 



+ Block 6 
t 

MAX i s  largest 
number of symbols 
in any  entry of 
group  table 

I 

1 
MAX = 0 

NOP1-Number of ACROSS 

NOP2-Number of DOWN 
operations 

operations 

t 
DO 38 

Il=l, NOPl  
12.1, NOP2 

1 
Store  left  paren, 
ANS( l , I l , I2 ) ,  
and  comma in 
OUT(M, 11.12) 
(M=l,2,3, 
respectively) 

1 

1 

JPR=O 
J-3 
K1= 1 

KN  array 
= C023.. . N1 

i” I= 1, N 

r$ L= 1, N 

ANS(K, 11,121 
and comma in 
OUT(M, 11.12) 
(M-J+l,J+Z, 
respectively) 
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entry in 

KK.1, N 

I 

JRP = number 
paren in of symbols in 

particular entry 
in group  table 

9 JRP = J 

Store left paren, 
ANS(K, 11, IZ), 
and comma in 
OUT(M, 11.12) 
(M=J+l, J+2,  J+3, 
respectively) 

I 
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I 1  I l l  I I I I I I I  

L 

8 J = JRP 

Yes 

I 

9 MAX = J 

4 Statement 
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r 

c", Block 7 

INPUT 
array  

WRITE 
IDENT 

WRITE 

blanks in 

operations in 

ACROSS 
operations 

blanks in 

operations in 
LINE array  

1 

DO 48 
K= 1, K5 

K5 = number of entries 
in group  multi- 
plication  table + 

Store OUT 
array in 
LINE array  

I 

lement in 

WRITE 

array  

6 
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SQUEZ(OUT, N) 

12. BLK 

I2 and BLK 
are  ha l f  words 

LOGICAL’l 
L1(2), OUT(1). 

L1(1),  Ll(21, BLK1, 
and OUT array 
are U4 words 
( 1  byte  long) 

LU1)  equivalenced 
to 1st  byte of I 2  

LU2)  equivalenced 
to 2nd  byte of I 2  

DATA  BLK, BLK l  

Bit  representation: 
1st  byte  2nd  byte 

ELK  -1000000001)000100001 

;i”o’\ 

I = l , M  

b I 2  = 0 

OUTII) A 

c 

t 
J=J+1 

Store I ‘  
character in 
Jth byte of 
OUT array 

I 

J=J+1 

32 
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of nonblank 
character+l>total 

No 

x 

Store blanks 
in reminder 
of OUT array - 

1 
- Statement 

2 

1 

I 
RETURN 

END 



APPENDIX B 

LISTING 

C 
C 
C 
1 



. .. . 

t 

C T R A N S P O S  I T  ICNS 
C 

C bLECK ( 3 )  STORES € A C H  CPERATICIN I N  PAIRS  ARRAY AS A 'PRODUCT GF 

DO 19 Kzl.2 
NPAIR(lrK)=O 
&UP= 1 

: IPRh=O 
CHAR=BLK 
I I=C 
GNE=.TRUE. 
COMMA=,FALSE. 
IE=NINPUT(K) 
CO 16 I=l,IE 
TEMP=INPUT(I,K) 
I F  (TEMP.EQ.ULK) GO TO 16 
If (TE+lP.EQ.LP 1 G G  TC 9 

I F  (TEMP.EQ.CM) GC TC! 11 
I F  (TEYP.€Q-CGL) GG T O  1 4  

GG T C  1 5  

IF  (TEMP.EQ-KP) GC TC 10 

C H A R = I S L L ( R , C ~ A R ) + I S ~ L ( ~ 4 , T ~ M P )  ' 

9 IPRh=IPRK+l 
C;NE=.  TRUE. 
I F  ( I P ~ N . L T . O . O K . I P R N . G T . 1 )  GO TU 57 
GO T C  15 

10 IPKK=IPRN-l 
IF (.NOT.COMklA) Gt1 T O  5E 
C O M V A = . F A L S E .  
EN€= . T R U E  . 
I F  (IPRN-LT.O.UR.IPRN,GT.l) GC T O  57 
GU TC LZ 

11 COYPA=.TRUFo 
12 NPAIR(NCP,K)=~PAIR(NCPIK)+1 

IF (LPAIH(NCPIK).GT-L~) GC TC 5 Y  
I F  (CI-AK.EC.BLK) GO TO 56 
IJ=hPAIQ.(K0P,K) 
PAIKS(IJ,hUPvK)=CHAR 

. )  I F  ( C h E I  GU T U  13 
" NPAIR(NOP.K)=hPAIR(N~P,K)+l 
',, I J=hPA IFC (NOP K + P4IRSIIJ,hOP,K)=CHAR 1 3  CHAR=HLK 

'GC TI1 15 
ONE=.FALSE. 

14 h'CP=NCP+l 
I F  (NOP.GT.24) 6 G  T O  60 
h'PAIR(NGP,K)=O 

15 II = I  I + 1  

1 6 LONT I NUE 
INPLT(II,K)=TEMP 

hI&PUT(K)=II+l 
I F  (TNPUT(IIIK).NE.COLI GU T O  17 
NOP=NUP-l 

1 GC T O  I d  
'1 7 INPUT(II+l,K)=CCL 

NCPA(K)=KGP 
1 R  I F  INPATR(l,K).EQ-O) G 6 T C  1 

19 CO N T I N U E  
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C 
C 
C 

BLOCK ( 4 )  S E T S  UP A N S  A R R A Y  I h  STAlriDARU F O R M  OR CCNFIGURATION 

2 0  
t 
C 
C 

21 

22 

2 3  

24 

25 

26  
27  

FLCCK (5) PERFLRMS THE PRODUCT OPERATIONS 

m 
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C '  

C E F F E C T  A S  GLOCK (5) 
t:. c BLbCK ( 6 )  I O E N T I F I E S  TkE SINGLE  GROUP  ELEMENT WHICH HAS THE SAHE 

2 8  

29 
3 0  

a 
3 1  

" 3 2 
33 

3 4  

3 5  
3 6  

3 7  

3 3  
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C 
C 

BLOCK (7) SETS UP THE OUTPUT F O R M A T  AND L i R I T E S  ERRCR MESSAGES 

3 9  

f4 0 

41 

42 

43 

44 
45 

46 

47 

4 8  

38 

DC 41  K=1r2 
J= 0 
Jl=l 
IE=AINPUTIK) 
DO 40 I=lrIE 
IF (INPUT(IrKIobiE.CCL) GO TC: 40 
CX=I-Jl+l 
CALL SQUEZ (II\;PUT( JltK) TMX 1 
IF (MX.LE.MAX) G O  TO 3Y 
#AX=MX 
Jl=KX+Jl 
J=J+1 

CCNTINUE 
I F  (J.EQ.kCPA(K)) 60 TO 41 
CPNTIr\jUE 
NC=32 
FAX=WAX+l 
kUM=NC/MAX-1 

NINf  J*K)=MX 

IF INUM.LT.2) G Q  T O  04 
Fib!= (kOPl+NUK-l l/I\UM 
k R I T E  ( 6 ~ 6 7 )  (IDEKT(1 1 r I = l  ,ID) 
W R I T E  ( 6 ~ 4 8 1  TITLE 
Kl=l 
DO 54 I = l r K b !  
DG 4 2  t = 1 ~ 3 2  
LINE(LI=BLK 
L 1-RAX 
EO 44 J=l ,NUN 
Il=(I-l)*NUW+J 
I F  (Il.GT.NCP1) GO TO 45 
KZ=r\;IN( I1 r l  ) + K l - L  
DO 4 3  K=KlrKZ 
Ll=L1+1 
LIhE(Lll=INPUT(K*l) 
L1=( J+l )*:MAX 
Kl=K2+1 

K3= 1 

Ll=C 
DO 46 L=lr32 
LINE(L)=BLK 
K ~ = ~ I N (  1 2 ~ 2 ) + ~ 3 - 1  

CRITE (6 ,691 LIKE 

En 53 12=1,l~0~2 

DC 47 K=K3rK4 
Ll=L  1+1 
L.INEILl)=lNPUT(KrZ) 
K3=K4+1 
Ll=WAX 
CC! 51  J-lrNUM 
Il=(I-lI+hUM+J 
IF IIl.GT.NOP1) G O  T @  5 2  
K5=NGUT(IlrI?) 
IF ( K 5 o F Q . O )  G O  T O  4 Y  
DO 48 K=lrK5 
Ll=L1+1 
L I ~ E ( L ~ ) = O U T ( K I I L T I ~ )  
.GO T O  5 0  

a 

c 

T 

L 



r 

5 5  

56 

57 

5 '7 

6 0  

61 

6 2  

6 3  

h4 

6 5  
' 66 

67 
.- 6 iJ 

or: 
73 
71 
7 2  

I 73 
74 
75 
76 
77 
78 
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